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One of the earliest proposed phase transitions beyond the Landau-Ginzburg-Wilson paradigm is the quantum
critical point separating an antiferromagnet and a valence-bond solid on a square lattice. The low-energy
description of this transition is believed to be given by the 2+1 dimensional CP1 model—a theory of bosonic
spinons coupled to an Abelian gauge field. Monopole defects of the gauge field play a prominent role in the
physics of this phase transition. In the present paper, we use the state-operator correspondence of conformal
field theory in conjunction with the 1 /N expansion to study monopole operators at the critical fixed point of the
CPN−1 model. This elegant method reproduces the result for monopole scaling dimension obtained through a
direct calculation by Murthy and Sachdev. The technical simplicity of our approach makes it the method of
choice when dealing with monopole operators in a conformal field theory.
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I. INTRODUCTION

Recent theoretical studies have begun to elucidate two
remarkable classes of quantum critical phenomena in two-
dimensional magnetic insulators. Phase transitions beyond
the Landau-Ginzburg-Wilson paradigm make up the first
such class.1–4 These Landau-forbidden transitions are con-
tinuous quantum critical points �QCPs� between two conven-
tional ordered ground states, where a Landau theory descrip-
tion in terms of the two order parameters does not predict a
direct continuous transition upon tuning a single parameter.
The second class consists of critical spin liquids, which are
disordered ground states with gapless excitations and power-
law correlations, and which can exist as stable zero-
temperature phases that can be accessed with no fine tuning
of parameters.5–13 Aside from the intrinsic theoretical inter-
est, there is evidence for a Landau-forbidden phase transition
in a model of S=1 /2 spins, between a Néel antiferromagnet
and a valence-bond solid �VBS�.14,15 Moreover, several ma-
terials have emerged as candidates for critical spin liquid
ground states.16–25

The field-theoretic description of such phenomena can
typically be cast in terms of a gauge field coupled to bosonic
and/or fermionic matter fields. In particular, the Landau-
forbidden QCP between the Néel and VBS ground states is
described by the CPN−1 model for N=2,1,2 which consists of
an N-component boson field z coupled to a compact U�1�
gauge field A�. Compactness means that magnetic monopole
defects of the gauge field are present and carry the quantized
flux 2�q; in two dimensions, these are instanton configura-
tions of the gauge field in space-time. Such topological de-
fects, and the field theory operators �called monopole opera-
tors� that insert them at a particular point in space-time, play
an important role in Néel-VBS transition, and in other gauge
theories of Landau-forbidden QCPs and critical spin liquids.
In the present case, q=1 monopole operators play a particu-
larly important role as the order parameter for the VBS state.
Furthermore, q=4 monopole operators are allowed perturba-

tions to the action. Thus it is important to have information
about the scaling dimensions of monopole operators, which
determine power-law decay of their two-point functions, and
whether those operators allowed by symmetry are relevant
perturbations to the action.

Many of the gauge theories of interest, including the
CPN−1 model, are solvable in a large-N limit, where the num-
ber of bosonic or fermionic matter fields is taken large. Even
in this solvable limit, it is challenging to work with mono-
pole operators because they cannot be expressed as a poly-
nomial of gauge and matter fields. While electric-magnetic
duality gives direct access to monopole operators,26 it is lim-
ited to purely bosonic theories with only Abelian symme-
tries. Despite these difficulties, progress has been made: in a
technical tour de force by a direct evaluation of the free
energy of a monopole-antimonopole pair, Murthy and
Sachdev27 calculated the monopole scaling dimension as a
function of q for the CPN−1 model in the large-N limit. Much
more recently, Borokhov et al.28 exploited the state-operator
correspondence of conformal field theory to calculate the
monopole scaling dimension for massless Dirac fermions
coupled to a U�1� gauge field, often referred to as QED3. In
the large-N limit, calculation of the scaling dimension was
reduced to determining the ground-state energy of free Dirac
fermions moving on a sphere with a background quantized
flux. Although conceptually more sophisticated, this calcula-
tion was technically much simpler than that of Murthy and
Sachdev.27

In this paper, we follow Ref. 28 and apply the state-
operator correspondence to calculate monopole scaling di-
mensions in the CPN−1 model, and reproduce the result of
Murthy and Sachdev27 in a relatively simple calculation. In
addition to the aesthetic advantage of greater simplicity, this
result provides a nontrivial check on the correctness of the
Murthy-Sachdev result. Furthermore, it illustrates the power
of the state-operator correspondence in working with mono-
pole operators of conformal field theories in three space-time
dimensions.
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The outline of our paper is as follows. In Sec. II we begin
with a brief review of the solution of the CPN−1 model in the
large-N limit. Next, in Sec. III we review the state-operator
correspondence in some detail. In Sec. IV, we use the state-
operator correspondence to calculate the monopole scaling
dimension in the CPN−1 model and present the details of the
calculation. This is followed by a discussion �Sec. V� and
conclusions �Sec. VI�. Technical details are contained in Ap-
pendixes A and B.

II. REVIEW OF CPN−1 MODEL

The Lagrangian of the CPN−1 model in D=3 Euclidean
space-time dimensions is

L = �D�z�2 + i���z�2 −
1

g
� , �1�

where z is an N-component complex scalar field, and � is a
local Lagrange multiplier enforcing the constraint z†z=1 /g.
The covariant derivative D����− iA�, where A� is a non-
compact U�1� gauge field. The noncompactness of A� is
equivalent to the fact that the gauge flux is a conserved U�1�
current j�

G=������A�. Conservation of j�
G is equivalent to the

absence of monopole events in space-time, or, in other
words, to the absence of monopole operators in the Lagrang-
ian. For the purposes of this paper, there is no need to con-
sider the more complicated compact CPN−1 model, which can
be easily defined on the lattice. The reason is that monopole
operators are irrelevant �in the renormalization-group sense�
at the large-N critical point of the CPN−1 model, and so the
critical properties will be the same whether we start with a
compact or noncompact model.

The global symmetry is thus �SU�N� /ZN��U�1�, where
the SU�N� rotates among the N components of z, and the
U�1� is the symmetry associated with flux conservation �i.e.,
conservation of j�

G�. The quantized flux q of a monopole
operator is its charge under the U�1�. A useful way to state
the difference between the compact and noncompact CPN−1

models is that noncompact model has U�1� flux conservation
as an exact microscopic symmetry while in the compact
model this symmetry is not present. However, at least in the
large-N limit, this symmetry emerges at long distances at the
critical point, corresponding to the irrelevance of monopole
operators.

The critical point of the CPN−1 model is a continuous
transition between an ordered phase where z is condensed
�small g� and a disordered phase �large g� where the only
low-energy excitation is the photon of the U�1� gauge field.
Upon integrating out the z bosons, we obtain the effective
action for the fields A� and �,

Seff = N Tr ln�− D�D� + i�� −
1

g
	 dDxi� . �2�

Taking g�1 /N, Seff is exactly solved by the saddle-point
approximation in the large-N limit, and corrections to any
desired quantity can be obtained in the 1 /N expansion.

In the large-N limit, monopoles appear as the solutions to
the saddle-point equations where ��jG

� �0 at a few points in

space-time. For example, the lowest action saddle point with
a charge-q monopole at the origin has a gauge field A�

q , cho-
sen so that

������A�
q =

q

2

x�

x3 . �3�

One then needs to solve the saddle-point equations to find

the saddle-point value of the Lagrange multiplier field, �̄q�x�.
The corresponding saddle-point action of the monopole is
then

Sq = N Tr ln�− ��� − iA�
q ���� − iA�

q � + i�̄q� −
1

g
	 dDxi�̄q.

�4�

At the critical point �g=gc�, the action Sq is related to the
scaling dimension of the monopole operator mq

��x�, which
inserts a charge-q monopole. To see this, we put the theory in
a space-time which is a ball of radius R. Then we consider
the object as

f�R� = 
mq
��0�� �5�

=

	 �dz��dA���d��mq
��0�exp − 	

�x��R

d3xL

	 �dz��dA���d��exp − 	
�x��R

d3xL
�6�

=e−�Sq−S0�. �7�

At criticality, the usual scaling considerations applied to this
object dictate that

f�R� � �R

a
�−	q

, �8�

where 	q is the scaling dimension of mq
� and a is a short-

distance cutoff �e.g., the lattice spacing�. This implies that

Sq − S0 � 	q ln�R

a
� . �9�

In the disordered phase �g
gc� there is a finite correlation
length �, and for R�� one has

Sq − S0 � 	q ln� �

a
� . �10�

Working in the disordered phase, Murthy and Sachdev27 di-
rectly evaluated Sq and obtained the coefficient of the loga-
rithm in Eq. �10�, and hence the monopole scaling dimen-
sion. In this paper we will calculate the same quantity by a
somewhat less direct but technically much simpler method.

As it will be needed later on, we now compute the N
→
 critical coupling gc, where the phase transition occurs.
On the SU�N�-symmetric side of the phase diagram, the low-
est action saddle point is expected to be given by A�=A�

0

=0 and i�= i�̄0=m2. Thus, the gap equation �S
�� =0 becomes
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	 d3p

�2��3

1

p2 + m2 =
1

Ng
. �11�

The integral on the left-hand side is ultraviolet divergent and
needs to be regularized. We will consistently use throughout
this paper Pauli-Villars regularization, which is obtained by
augmenting the operator trace in Eq. �2� by

Tr ln�− D�D� + i�� → Tr ln�− D�D� + i��

+ 

i

si Tr ln�− D�D� + i� + Mi
2� ,

�12�

where Mi
2 are regulator masses to be taken to infinity, and si

are alternatingly −1 for fermionic regulators and +1 for
bosonic regulators. To regularize the trace completely in the
current problem, we actually need three regulator fields �i
=1,2 ,3�, satisfying



i

si = − 1 and 

i

siMi
2 = 0. �13�

Thus, the regularized saddle point equation �Eq. �11�� is

	 d3p

�2��3� 1

p2 + m2 + 

i

si
1

p2 + m2 + Mi
2� =

1

Ng
. �14�

At the critical point, the z-boson mass m vanishes; thus the
critical coupling gc is given by

	 d3p

�2��3� 1

p2 + 

i

si
1

p2 + Mi
2� =

1

Ngc
. �15�

Evaluating the integrals, the result is

1

Ngc
= −

1

4�



i

siMi. �16�

III. STATE-OPERATOR CORRESPONDENCE AND
MONOPOLE SCALING DIMENSIONS

While the state-operator correspondence is a standard and
well-known feature of conformal field theory �CFT�,29 it has
not been widely applied in condensed-matter physics except
in the context D=2 CFTs.30 For this reason, in this section
we introduce in some detail the state-operator correspon-
dence for a CFT in general space-time dimension D.

We consider a CFT in Euclidean space-time invariant un-
der the Euclidean Poincaré group and under scale transfor-
mations. �We actually do not need invariance under special
conformal transformations for the following discussion.� We
shall work in the scaling limit �i.e., continuum limit� so that,
in particular, we can think of scale transformations as an
exact symmetry. By assumption, any local operator can be
written as a linear combination of scaling operators Oi�x�.
Scale invariance is the statement that any correlation func-
tion of local operators is unchanged upon replacing Oi�x� by
Oi��x�=�	iOi��x�, where 	i is the scaling dimension of Oi.
The Noether current associated with scale transformations is
denoted as j�

D.

The goal of the ensuing discussion is twofold. First, we

shall show that there is a quantum Hamiltonian ĤS�R� de-
fined on the �D−1� sphere of radius R. The eigenstates of
this Hamiltonian are in one-to-one correspondence with the
scaling operators Oi, and their energies are related to the
scaling dimensions by Ei=	i /R. Second, we will give a

simple method for constructing ĤS�R�.
We shall define the “spherical Hamiltonian” HS�R� on a

sphere of radius R centered at the origin:

HS�R� �
1

R
	 dDx���x� − R�n�j�

D. �17�

Note that HS�R� is not quite the same as the quantum Hamil-

tonian ĤS�R�, which has not yet been defined. In Eq. �17�,
n��x� is the outward normal vector of the sphere, and the
initial factor of 1 /R has been inserted for later convenience.
The spherical Hamiltonian is useful because it is the genera-
tor of infinitesimal scale transformations. This statement is
made precise by the Ward identity, which for the scaling
operator Oi�x� can be written as

HS�R�Oi�x� =
1

R
�	i + x����Oi�x� , �18�

provided �x��R. �For a development of Ward identities as
they are used here, we refer the reader to chapter two of Ref.
31.�

We need to construct the Hilbert space in which ĤS�R�
acts. Suppose the Lagrangian depends on the set of fields �a.
A wave function on the �D−1� sphere of radius R is a func-
tional �=���a�, which depends only on �a�x� for �x�=R.

The operator ĤS�R� is defined by its action on the wave
function �:

�ĤS�R�����a� = lim
�→0+

	 �
R−���x��R+�

�d�a��x��

�� �
�x�=R+�

���a�x� − �a��x���
�HS�R����a�;R − �� . �19�

For each scaling operator, we can associate a wave func-
tion �i by inserting Oi at the origin, and “cutting open” the
path integral at �x�=R. This means we integrate over �a�x�
for �x��R with a fixed boundary condition at �x�=R. For-
mally,

�i��a;R� =	 �
�x��R

�d�a��x��

�� �
�x�=R

���a�x� − �a��x���Oi�0�e−S��a��.

�20�

The action of ĤS�R� on �i can be calculated using the Ward
identity:
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�ĤS�R��i���a� = lim
�→0+

	 �
�x��R+�

�d�a��x��

�� �
�x�=R+�

���a�x� − �a��x���
�HS�R�Oi�0�e−S��a�� �21�

=
	i

R
	 �

�x��R

�d�a��x��� �
�x�=R

���a�x� − �a��x���Oi�0�e−S��a��

�22�

=
	i

R
�i��a� . �23�

Thus we have shown that �i is an eigenstate of ĤS�R�, where
the energy Ei is simply related to the scaling dimension of Oi
by Ei=	i /R. Furthermore, this result can be used to argue
that for each Oi there is a unique state �i. First, if two Oi
have different scaling dimensions, then the corresponding
states have different energies and are clearly distinct �i.e.,
they are orthogonal�. Suppose that a set of Oi has the same
scaling dimension. Generically, this will only occur if these
operators form an irreducible multiplet under the global sym-
metries of the CFT. The corresponding states must transform
under the same multiplet; therefore, they must be linearly
independent and can be chosen to be mutually orthogonal.

To complete this discussion we still need to show that
wave functions ���a� and scaling operators Oi are in one-
to-one correspondence. We have already shown that for each
scaling operator there is a unique state �i. It remains to be

shown that every eigenstate of ĤS�R� corresponds to a
unique scaling operator. First, on general grounds of scale
invariance, there must be a one-to-one linear mapping relat-

ing eigenstates of ĤS�R� to those of ĤS�r�. Consider an

eigenstate ���a ;R� of ĤS�R� with energy E, whose image
under this mapping is ���a ;r� with energy E�=ER /r. �E�
must have this form because the energies scale with inverse
radius of the sphere, as is apparent, for example, from the
form of the Ward identity.� We shall be interested in r�R,
and we may make r as small as we like �as long as it is not
so small that we are no longer in the scaling limit�. We con-
sider a functional integral where we insert this state at radius
r, that is,

Z� =	 �
r��x��


�d�a�x�����a;r�e−S��a�. �24�

As r becomes small, we can view this as the insertion of
some local operator O at the origin. That is,

lim
r→0

Z� =	 �
x

�d�a�x��O�0�e−S��a�. �25�

Now we can apply the Ward identity to an insertion of HS�R�
inside Z�:

	 �
r��x��


�d�a�x�����a;r�HS�R�e−S��a�

=
r

R
lim

�→0+
	 �

r��x��


�d�a�x�����a;r�HS�r + ��e−S��a�

�26�

=
E�r

R
	 �

r��x��


�d�a�x�����a;r�e−S��a� �27�

=E	 �
r��x��


�d�a�x�����a;r�e−S��a�. �28�

Taking the limit r→0, the above relations imply the operator
equation HS�R�O�0�=EO�0�, and O is a scaling operator, as
desired.

Now that we have established the basic facts of the state-
operator correspondence, we will outline a simple procedure

to actually construct ĤS�R�. It is useful to recall how this can
be done for the usual Hamiltonian. Starting from a quantum
state defined on the spacelike hypersurface at constant imagi-
nary time �, the Hamiltonian, which generates time transla-

tions, can be defined in terms of the transfer matrix e−��Ĥ that
evolves to the hypersurface at �+��. In principle, the transfer
matrix can be obtained from the functional integral by inte-
grating over the fields between � and �+��.

Similarly, in the present case we can start with a quantum
state defined on the �D−1� sphere of radius R. It is useful to
work in polar coordinates x= �r ,��, where � includes the
D−1 angular coordinates, and make the change of variables
r=Re�/R for a fixed value of R. In these variables, scale trans-
formations are realized as “time” translations �→�+��. An
infinitesimal scale transformation sends R→Re��/R=R+��.
Therefore the spherical Hamiltonian, which generates scale
transformations, can be obtained from the transfer matrix

e−��ĤS�R� that evolves the state at R to one at radius R+��.
Now, as illustrated in Fig. 1, for a small patch of the �D

−1� sphere of radius R, the infinitesimal scale transformation
is indistinguishable from an infinitesimal time translation in
the radial direction. On this small patch, then, the scale trans-

R τ
x

FIG. 1. Depiction of a scale transformation as an evolution from
the sphere at radius R to an expanded sphere with larger radius. In
the magnified region, we illustrate that this evolution is locally
equivalent to a time translation, with the locally defined time ���
and space �x� coordinates shown.
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formation will simply be generated by the Hamiltonian den-
sity �for appropriately defined local time and space direc-
tions�. In order to obtain the generator of scale
transformations for the entire sphere, we simply need to wrap
the flat-space Hamiltonian onto the sphere. In practice, it is
often easier to work with the functional integral correspond-

ing to ĤS�R�, which is defined on the space SD−1�R��R.
Here SD−1�R� is the �D−1� sphere of radius R, and R is the
imaginary time direction parametrized by �.

IV. CALCULATION

Our objective is to compute the scaling dimension 	q of
the monopole operator of charge q. Such an operator will
create states with flux 2�q out of the vacuum. Therefore, by
the state-operator correspondence, to find 	q we must tune
the theory to the critical coupling gc, compactify the spatial
manifold to a two-sphere S2 of radius R, and find the energy
of the state carrying a flux 2�q over the sphere.

As a first step we need to find the saddle point of the
theory on a sphere with flux. We expect the saddle point for
the gauge field A� to be given by a uniform distribution of
the flux over the spatial sphere �in particular A�=0�. We also
expect the Lagrange multiplier � to go to a finite constant,
i�=mq

2. Note that even though for an infinite system i�
=m2=0 at the critical point, finite-size effects lead to a non-
vanishing mq

2�O�R−2� on a sphere of radius R. In fact, as we
will see shortly, �mq

2+q /2 is just the minimal energy to cre-
ate a spinon above the state with flux q. In particular, for q
=0, we expect m0R to be the scaling dimension 	z of the
operator z.32 We know that for N→
 this conformal dimen-
sion is just the engineering dimension for the field
z—namely 	z=1 /2. We will verify shortly that m0R=1 /2.

By varying the effective action �i.e., the analog of Eq. �2�
on the sphere� with respect to �, we obtain the gap equation
on a sphere with flux,

Tr� 1

− D�D� + mq
2� + 


i

si Tr� 1

− D�D� + mq
2 + Mi

2�
=

4�R2�

Ngc
, �29�

where � is the length of the temporal direction. Using trans-
lational invariance along the time direction,

	 d�

2��Tr�� 1

− D�
2 + �2 + mq

2�
+ 


i

si Tr�� 1

− D�
2 + �2 + mq

2 + Mi
2�� =

4�R2

Ngc
,

�30�

where −D�
2 is the square of the covariant derivative along

spatial directions, and Tr� is the trace over the space of
functions on the sphere of radius R. We may take the �
integral, obtaining

1

2�Tr�� 1

�− D�
2 + mq

2�1/2�
+ 


i

si Tr�� 1

�− D�
2 + mq

2 + Mi
2�1/2�� =

4�R2

Ngc
.

�31�

To evaluate the traces in Eq. �31� we need the spectrum of
−D�

2 . Fortunately, this problem of a particle moving on a
sphere with a monopole of charge q at the origin was solved
a long time ago by Wu and Yang.33 The eigenfunctions are
the monopole harmonics, Yq/2,l,m with l=q /2,q /2+1, . . . and
m=−l ,−l+1, . . . , l. The corresponding eigenvalue of −D�

2 R2

is l�l+1�− �q /2�2. Note that, for q=0, we recover the usual
spherical harmonics. Thus, Eq. �31� becomes

1

2 

l=q/2



2l + 1

4�R � 1

�l�l + 1� − �q/2�2 + �mqR�2�1/2

+ 

i

si
1

�l�l + 1� − �q/2�2 + �mqR�2 + �MiR�2�1/2� =
1

Ngc
.

�32�

We would like to isolate the cut-off dependence of the
left-hand side of Eq. �32�. For this purpose, we rewrite Eq.
�32� as

4�R

Ngc
= Gq�aq

2� + 

i

siGq�bqi
2 � , �33�

where

Gq�b2� = 

l=q/2


 � l + 1/2
��l + 1/2�2 + b2�1/2 − 1� , �34�

aq
2 = �mqR�2 −

1

4
�q2 + 1�, bqi

2 = aq
2 + �MiR�2. �35�

Here we have used the fact 
isi=−1. The ultraviolet cutoffs
Mi now appear only in the second term on the right-hand
side of Eq. �33�. To finish isolating the cut-off dependence
we need to find the behavior of the function Gq�b2� in the
limit b2→
. This is easily accomplished using Poisson re-
summation �see Appendix A�, and we obtain

Gq�b2� � − b + q/2, b → 
 . �36�

Here, we have dropped terms decaying as b−1 or faster. Sub-
stituting this into Eq. �33�, we have

4�R

Ngc
= Gq�aq

2� − 

i

sibqi − q/2. �37�

Now, eliminating gc using Eq. �16�, we see that the
ultraviolet-divergent terms cancel, and we obtain

Gq�aq
2� = q/2. �38�

This is precisely the same as Eq. �3.23� of Murthy and
Sachdev,27 with the identification �q=−aq

2−q2 /4=1 /4
− �mqR�2. Also, notice that Gq�0�=0. So for q=0, we imme-
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diately obtain a0
2=0 as the solution to Eq. �38�, and m0R

=1 /2 as expected.
Now we proceed to the calculation of the energy of a state

with flux 2�q. Namely, let

Tq =
1

��Tr ln�− D�D� + mq
2�

+ 

i

si Tr ln�− D�D� + mq
2 + Mi

2�� . �39�

The saddle-point action of the configuration with flux 2�q is
given by

Sq = �NTq −
1

gc
	 dxmq

2 = N��Tq −
4�R2

Ngc
mq

2� , �40�

and, therefore, the energy Eq is given by

EqR

N
= TqR −

4�R

Ngc
�mqR�2. �41�

The desired scaling dimension of the charge-q monopole op-
erator is 	q= �Eq−E0�R.

We now evaluate Tq. Going to frequency space, we have

Tq =	 d�

2��Tr� ln�− D�
2 + �2 + mq

2�

+ 

i

si Tr� ln�− D�
2 + �2 + mq

2 + Mi
2�� �42�

=Tr��− D�
2 + mq

2�1/2 + 

i

si Tr��− D�
2 + mq

2 + Mi
2�1/2.

�43�

Recalling the form of the spectrum of −D�
2 ,

TqR = 

l

�2l + 1���l�l + 1� − �q/2�2 + �mqR�2�1/2

+ 

i

si�l�l + 1� − �q/2�2 + �mqR�2 + �MiR�2�1/2� .

�44�

We rewrite this in the form

TqR = 2Fq�aq
2� + 2


i

siFq�bqi
2 � , �45�

where

Fq�b2� = 

l=q/2


 ��l + 1/2���l + 1/2�2 + b2�1/2

− �l + 1/2�2 −
1

2
b2� . �46�

It should be noted that the sum over l in Eq. �46� converges.
As in the analysis of the gap equation, only the second term
of Eq. �45� depends on the ultraviolet cutoff. Also as before,
we consider the b→
 limit of Fq�b2�. After a short calcula-
tion �see Appendix A�, we obtain

Fq�b2� � −
1

3
b3 +

q

4
b2 + � 1

24
−

q2

8
�b +

1

24
q�q2 − 1�,

b → 
 . �47�

Substituting this result into Eq. �45� and noting that bqi
3

= �MiR�3+ 3
2aq

2�MiR�+O��MiR�−1�, we find

TqR = −
2

3

i

si�MiR�3 + � 1

12
−

q2

4
− aq

2�

i

siMiR + 2Fq�aq
2�

−
q

2
aq

2 −
1

12
q�q2 − 1� . �48�

Now, we can bring everything together. Substituting the criti-
cal coupling gc �Eq. �16�� into Eq. �41� and recalling that
�mqR�2=aq

2+ 1
4 �q2+1�, we find

EqR

N
= −

2

3

i

si�MiR�3 +
1

3

i

si�MiR� + 2Fq�aq
2� −

q

2
aq

2

−
1

12
q�q2 − 1� . �49�

The cut-off-dependent �and also ultraviolet-divergent� terms
in EqR /N comprise a q-independent constant. Hence, the en-
ergy differences are finite:

�Eq − E0�R
N

= 2�Fq�aq
2� − F0�a0

2�� −
q

2
aq

2 −
1

12
q�q2 − 1� .

�50�

Recalling that a0
2=0 and noting that Fq�0�=0, we obtain the

final result,

	q

N
=

�Eq − E0�R
N

= 2Fq�aq
2� −

q

2
aq

2 −
1

12
q�q2 − 1� . �51�

It is easy to show this result is precisely that of Murthy and
Sachdev27 �see Appendix B�.

V. DISCUSSION

Let us put our calculation into the context of the role of
U�1� flux symmetry in the noncompact CPN−1 model. In the
ordered phase of the theory �g�gc�, the flux symmetry is
unbroken, as the Meissner effect leads to flux confinement.
The configurations carrying magnetic flux in this phase have
a finite energy and, in fact, are quantum descendants of in-
stantons of the two-dimensional CPN−1 model.34 Close to the
critical point these instantons are strongly dressed by the
interaction: their size grows and their energy decreases as
g→gc. Precisely at the QCP the instantons become massless.
The condition that flux and spin gaps vanish at the same
critical point is at the heart of deconfined criticality. We have
verified this fact explicitly in the present paper by showing
that the energy of a flux q instanton goes as 	q /R on a sphere
of radius R. The observation that on a finite sphere the en-
ergy scales as 1 /R at the QCP follows from dimensional
analysis arguments. However, the fact that 	q coincides with
the scaling dimension of the monopole operator is a non-
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trivial prediction of the state-operator correspondence of
conformal field theory. The agreement between our result
and the more direct computation of 	q by Murthy and
Sachdev27 is a strong check that the monopole operator sur-
vives in the scaling limit.

Now, to complete our discussion, once the coupling g

gc and we are in the disordered phase, the instantons, hav-
ing become massless at the phase transition, condense. As a
result, the U�1� flux symmetry is spontaneously broken; the
photon is a Goldstone boson associated with this symmetry
since it is created out of the vacuum by the current j�

G. What
is the fate of configurations carrying finite flux in this phase?
We can compute their energy directly from the effective ac-
tion for the photon field,

S =
1

2e2	 d3x�������A��2, �52�

where to leading order in 1 /N, e2=24�m /N, with m being
the spinon mass. For simplicity we work with a flat spatial
manifold here �e.g., a torus�. Then, smearing the flux 2�q
uniformly over the space,

�ij�iAj =
2�q

V
, �53�

where V is the spatial volume. The energy becomes

E =
�2�q�2

2e2V
. �54�

Indeed, as always occurs when a continuous global symme-
try is spontaneously broken, the states of finite charge �flux�
form a tower, with energies scaling as inverse volume.

Thus, in the N=
 limit, we have a detailed quantitative
understanding of the flux sector of the CPN−1 model at the
critical point and in the disordered phase. It would be inter-
esting to extend the quantitative description to the ordered
phase. In particular, it would be interesting to compute the
finite instanton mass mi, which we expect to govern the long-
distance decay of monopole-antimonopole correlation func-
tions. From general scaling arguments, we expect mi��g
−gc��, where � is the correlation length exponent. Moreover,
we expect the ratio mi /�s, where �s is the spin stiffness, to be
a universal number. Unfortunately, it is rather difficult to
analyze the instantons in the ordered phase even at N=

since the saddle-point value of the fields A� and z� is no
longer dictated by symmetry as it was at the critical point.

VI. CONCLUSION

In this paper we have used the state-operator correspon-
dence of conformal field theory to compute the monopole
scaling dimension in the CPN−1 model at N=
. Our result
agrees with the more direct calculation by Murthy and
Sachdev;27 however, our approach has the advantage of tech-
nical simplicity. In fact, one can even envision using this
method to compute the 1 /N corrections to the monopole
scaling dimension. From the conceptual point of view our
result demonstrates the vanishing of the flux gap at the QCP

and confirms the survival of the monopole operator in the
scaling limit.
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APPENDIX A: FUNCTIONS Gq(b2) AND Fq(b2)

The purpose of this appendix is to compute the behavior
of functions Gq�b2� �Eq. �34�� and Fq�b2� �Eq. �46�� in the
limit b→
. We begin with Gq. First, we consider the case q
even. Then,

Gq�b2� = 

l=0


 � l + 1/2
��l + 1/2�2 + b2�1/2 − 1�

− 

l=0

q/2−1 � l + 1/2
��l + 1/2�2 + b2�1/2 − 1� . �A1�

In what follows, we will drop all the corrections to Gq�b2�
that vanish as b−1 or faster. Thus, simplifying the second
term above,

Gq�b2� = 

l=0


 � l + 1/2
��l + 1/2�2 + b2�1/2 − 1� + q/2. �A2�

Now we utilize the symmetry of the summand under l→−l
−1, obtaining

Gq�b2� =
1

2 

l=−



 � �l + 1/2�
��l + 1/2�2 + b2�1/2 − 1� + q/2. �A3�

Upon Poisson resumming the l’s, we have

Gq�b2� =
1

2 

n=−





�− 1�n	
−





dl� �l�
�l2 + b2�1/2 − 1�e2�inl + q/2

= 	
0




dl� l

�l2 + b2�1/2 − 1�+2

n=1




�− 1�n

�	
0




dl� l

�l2 + b2�1/2 − 1�cos�2�nl� + q/2. �A4�

As usual, the leading �divergent� contribution in the b→

limit comes from the n=0 term in Eq. �A4�, which is

	
0




dl� l

�l2 + b2�1/2 − 1� = − b . �A5�

As for the n�1 terms, we rotate the contour of integration as
follows:

MONOPOLES IN CPN−1 MODEL VIA THE STATE-… PHYSICAL REVIEW B 78, 214418 �2008�

214418-7



	
0




dl� l

�l2 + b2�1/2 − 1�cos�2�nl�

= bRe	
0




dl� l

�l2 + 1�1/2 − 1�e2�inbl

= bRe	
0




idy�iy���1 − y��1 − y2�−1/2

+ ��y − 1��y2 − 1�−1/2e−i�/2� − 1�e−2�nby �A6�

=− b	
0

1

dy
y

�1 − y2�1/2e−2�nby = − b� 1

�2�nb�2 + O� 1

�nb�4�� .

�A7�

Hence,

2

n=1




�− 1�n	
0




dl� l

�l2 + b2�1/2 − 1�cos�2�nl�

�
2

�2��2b


n=1




�− 1�n+1 1

n2 � O�b−1� , �A8�

and this can be dropped in the limit b→
. Therefore,

Gq�b2� � − b + q/2. �A9�

Repeating this analysis for q odd and b→
,

Gq�b2� = 

l=�q+1�/2


 � l

�l2 + b2�1/2 − 1�
= 


l=0


 � l

�l2 + b2�1/2 − 1� − 

l=0

�q−1�/2 � l

�l2 + b2�1/2 − 1�
=

1

2 

l=−



 � �l�
�l2 + b2�1/2 − 1� − 1/2 +

q + 1

2

=
1

2 

l=−



 � �l�
�l2 + b2�1/2 − 1� + q/2 �A10�

=
1

2 

n=−



 	 dl� �l�
�l2 + b2�1/2 − 1�e2�inl + q/2. �A11�

Comparing Eq. �A11� to its q-even counterpart �Eq. �A4��,
we see that the only difference is the absence of the factor
�−1�n in the sum. Recalling that in the b→
 limit the only
finite contribution came from the n=0 term in the sum, we
obtain the same result as in the q-even case �Eq. �A9��.

Now, we proceed to the function Fq. We again begin with
the case of q even:

Fq�b2� = 

l=0


 ��l + 1/2���l + 1/2�2 + b2�1/2 − �l + 1/2�2 −
1

2
b2�

�A12�

− 

l=0

q/2−1 ��l + 1/2���l + 1/2�2 + b2�1/2 − �l + 1/2�2 −
1

2
b2� .

�A13�

As before, we drop all the terms decaying as b−1 or faster.
Thus,

Fq�b2� �
1

2 

l=−



 ��l + 1/2���l + 1/2�2 + b2�1/2

− �l + 1/2�2 −
1

2
b2� �A14�

+
1

2
b2 


l=0

q/2−1

1 − b 

l=0

q/2−1

�l + 1/2� + 

l=0

q/2−1

�l + 1/2�2. �A15�

Poisson resumming the first sum, we have

Fq�b2� �
1

2 

n=−





�− 1�n	
−





dl��l��l2 + b2�1/2 − l2 −
1

2
b2�e2�inl

+
q

4
b2 −

q2

8
b +

1

24
q�q2 − 1�

= 	
0




dl�l�l2 + b2�1/2 − l2 −
1

2
b2�

+ 2

n=1




�− 1�n	
0




dl�l�l2 + b2�1/2 − l2 −
1

2
b2�

�cos�2�nl� +
q

4
b2 −

q2

8
b +

1

24
q�q2 − 1� . �A16�

As before, the most divergent piece in the b→
 limit comes
from the n=0 term in the Poisson-resummed series, which is

	
0




dl�l�l2 + b2�1/2 − l2 −
1

2
b2� = −

1

3
b3. �A17�

The integral for the n�0 terms can again be analyzed by
rotating the integration contour:

	
0




dl�l�l2 + b2�1/2 − l2 −
1

2
b2�cos�2�nl�

= b3Re	
0




dl�l�l2 + 1�1/2 − l2 −
1

2
�e2�inbl

= b3Re	
0




idy�iy���1 − y��1 − y2�1/2

+ ��y − 1��y2 − 1�1/2ei�/2� + y2 −
1

2
�e−2�nby

= − b3	
0

1

dyy�1 − y2�1/2e−2�nby

→ − b3� 1

�2�nb�2 + O� 1

�nb�4�� . �A18�
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Here, unlike for the gap equation, we cannot limit ourselves
to just the n=0 term in the b→
 limit, and

Fq�b2� � −
1

3
b3 +

2

�2��2b

n=1



�− 1�n+1

n2

+
q

4
b2 −

q2

8
b +

1

24
q�q2 − 1� �A19�

=−
1

3
b3 +

q

4
b2 + � 1

24
−

q2

8
�b +

1

24
q�q2 − 1� . �A20�

Performing a similar analysis for q odd, we find

Fq�b2� = 

l=0


 �l�l2 + b2�1/2 − l2 −
1

2
b2�

− 

l=0

�q−1�/2 �l�l2 + b2�1/2 − l2 −
1

2
b2�

�
1

2 

l=−



 �l�l2 + b2�1/2 − l2 −
1

2
b2�

−
1

4
b2 +

1

2
b2 


l=0

�q−1�/2

1 − b 

l=0

�q−1�/2

l + 

l=0

�q−1�/2

l2

=
1

2 

n=−



 	 dl�l�l2 + b2�1/2 − l2 −
1

2
b2�e2�inl

+
q

4
b2 −

1

8
�q2 − 1�b +

1

24
q�q2 − 1� �A21�

�−
1

3
b3 −

2

�2��2b

n=1



1

n2 +
q

4
b2 −

1

8
�q2 − 1�b +

1

24
q�q2 − 1�

�A22�

=−
1

3
b3 +

q

4
b2 + � 1

24
−

q2

8
�b +

1

24
q�q2 − 1� . �A23�

which is equal to the result �Eq. �A20�� we obtained for
q-even.

APPENDIX B: COMPARISON TO MURTHY-SACHDEV
EXPRESSION

Murthy and Sachdev27 expressed their result for the scal-
ing dimension of the monopole operator as

	q

N
= − �q + �q +

q3

24
+

q

12
, �B1�

where

�q =
q4

4 

l=q/2


 � 1

���2l + 1�2 − q2 + 2l + 1�2� , �B2�

and

�q = − 

l=q/2




�2l + 1����l + 1/2�2 − q2/4�1/2

− ��l + 1/2�2 − q2/4 − �q�1/2

−
�q

2��l + 1/2�2 − q2/4 − �q�1/2� . �B3�

Using the identification �q=−q2 /4−aq
2 to convert this to the

notation used in our analysis, and summing the last term in
Eq. �B3� using the gap equation, Eq. �38�, we have

�q = 2 

l=q/2


 ��l + 1/2����l + 1/2�2 + aq
2�1/2

− ��l + 1/2�2 − q2/4�1/2� +
�q

2
� +

q

2
�q. �B4�

For �q, we can eliminate the irrationality in the denominator
to obtain

�q = − 2 

l=q/2


 ��l + 1/2���l + 1/2�2 − q2/4�1/2

− �l + 1/2�2 +
1

8
q2� . �B5�

Thus, adding Eqs. �B4� and �B5�,

	q

N
= 2 


l=q/2


 ��l + 1/2���l + 1/2�2 + aq
2�1/2 − �l + 1/2�2 −

1

2
aq

2�
−

q

2
aq

2 −
1

12
q�q2 − 1� , �B6�

which is identical to our result �Eq. �51��.
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